K-MEANS

Ref: Chengkai Li, Department of Computer Science and Engineering, University of Texas at Arlington (Slides courtesy of Vipin Kumar)
Clustering Algorithms

- K-means and its variants
- Hierarchical clustering
K-means Clustering
K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

1: Select K points as the initial centroids.
2: repeat
3: Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
5: until The centroids don’t change
K-means Clustering – Details

- **Initial centroids** are often chosen randomly.
 - Clusters produced vary from one run to another.
- The **centroid** m_i is (typically) the mean of the points in the cluster.
 $$m_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

- ‘**Closeness**’ is measured by Euclidean distance, cosine similarity, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to ‘Until relatively few points change clusters’
- Complexity is $O(n \times K \times I \times d)$
 - $n =$ number of points, $K =$ number of clusters,
 - $I =$ number of iterations, $d =$ number of attributes
Two different K-means Clusterings

Original Points

Optimal Clustering

Sub-optimal Clustering
Importance of Choosing Initial Centroids
Importance of Choosing Initial Centroids

Iterations 1 to 6 show the distribution of data points and their grouping over iterations.
Importance of Choosing Initial Centroids …

Iteration 5

![Diagram showing the progression of iterations with clusters in different colors representing initial centroids and data points.](image-url)
Importance of Choosing Initial Centroids ...
Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

 \[SSE = \sum_{i=1}^{K} \sum_{x \in C_i} \text{dist}^2 (m_i, x) \]

 \(x \) is a data point in cluster \(C_i \) and \(m_i \) is the centroid of cluster \(C_i \)

- Given two clusterings, we can choose the one with the smallest error
 - the centroids of the clustering with smaller error are a better representation of points.

- One easy way to reduce SSE is to increase \(K \), the number of clusters
 - A good clustering with smaller \(K \) can have a lower SSE than a poor clustering with higher \(K \)
Problems with Selecting Initial Points

- If there are \(K \) ‘real’ clusters then the chance of selecting one centroid from each cluster is small.
 - Chance is relatively small when \(K \) is large
 - If clusters are the same size, \(n \), then

\[
P = \frac{\text{number of ways to select one centroid from each cluster}}{\text{number of ways to select } K \text{ centroids}} = \frac{K!n^K}{(Kn)^K} = \frac{K!}{K^K}
\]

- For example, if \(K = 10 \), then probability = \(10!/10^{10} = 0.00036 \)
- Sometimes the initial centroids will readjust themselves in ‘right’ way, and sometimes they don’t
- Consider an example of five pairs of clusters
Starting with two initial centroids in one cluster of each pair of clusters
10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters.
Starting with some pairs of clusters having three initial centroids, while other have only one.
Starting with some pairs of clusters having three initial centroids, while other have only one.
Solutions to Initial Centroids Problem

- Multiple runs
 - Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- Select more than k initial centroids and then select among these initial centroids
 - Select most widely separated
- Postprocessing
- Bisecting K-means
 - Not as susceptible to initialization issues
Post-processing

- Eliminate small clusters that may represent outliers
- Split ‘loose’ clusters, i.e., clusters with relatively high SSE
- Merge clusters that are ‘close’ and that have relatively low SSE
Bisecting K-means

Bisecting K-means algorithm

- Variant of K-means that can produce a partitional or a hierarchical clustering

1: Initialize the list of clusters to contain the cluster containing all points.
2: repeat
3: Select a cluster from the list of clusters
4: for $i = 1$ to number_of_iterations do
5: Bisect the selected cluster using basic K-means
6: end for
7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
8: until Until the list of clusters contains K clusters
Bisecting K-means Example
Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes

- K-means has problems when the data contains outliers.
Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)
Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)
Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)
Overcoming K-means Limitations

One solution is to use many clusters. Find parts of clusters, but need to put together.
Overcoming K-means Limitations

Original Points

K-means Clusters
Overcoming K-means Limitations

Original Points

K-means Clusters