Data Representation?

- How does a computer represent data?
 - 0 and 1 in the aspect of “general” computer science
 - Vector/Matrix in the aspect of “Machine Learning”
Data Representation

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **Scalar** | single number | - usually write in italics
- lower-case variable names
- e.g., $s \in \mathbb{R}, n \in \mathbb{N}$ \[1\] |
| **Vector** | array of numbers | - arranged in order
- lower-case names written in bold typeface
- $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, $x = \{x_1, x_2, \ldots, x_n\}$
- what is x_s when $s = \{1, 3, 6\}$?
- Then, $x_{\neg s}$? |

Data Representation

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix</td>
<td>2-D array of numbers</td>
<td>- an element is identified by two indices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- upper-case variable name with bold typeface, e.g., \mathbf{X}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- $\mathbf{X} \in \mathbb{R}^{m \times n}$: matrix has a height of m and a width of n, and elements are real numbers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- e.g., $\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \ x_{21} & x_{22} & x_{23} \end{bmatrix}$</td>
</tr>
<tr>
<td>Tensor</td>
<td>array with more than two axes</td>
<td>- three indices to identify an element</td>
</tr>
</tbody>
</table>
Types of Variable

- **Categorical variable:** discrete or qualitative variables
 - Nominal:
 - Have two or more categories, but which do not have an intrinsic order
 - Ordinal
 - Have two or more categories, which can be ordered or ranked.
- **Continuous variable**
Data Representation

- **Features**
 - An individual measurable property of a phenomenon being observed
 - The number of features or distinct traits that can be used to describe each item in a quantitative manner
 - May have implicit/explicit patterns to describe a phenomenon

- **Samples**
 - Items to process (classify or cluster)
 - Can be a document, a picture, a sound, a video, or a patient

Reference: https://en.wikipedia.org/wiki/Feature_(machine_learning)
Data Representation

- **Feature vector**
 - An N-dimensional vector of numerical features that represent some objects
 - A sample consists of feature vectors

- **Feature extraction (feature selection)**
 - Preparation of feature vector
 - Transforms the data in the high-dimensional space to a space of fewer dimensions

Reference: http://www.slideshare.net/rahuldausa/introduction-to-machine-learning-38791937
Example - Survey

- Convert Data to a feature vector/sample matrix

\[
\begin{bmatrix}
time &= agree \\
\vdots \\
audio &= yes
\end{bmatrix}
\]
Example – Structured data

- Convert Data to a feature vector/sample matrix

<table>
<thead>
<tr>
<th>Name</th>
<th>Finance</th>
<th>Marketing</th>
<th>Statistics</th>
<th>Strategy</th>
<th>Operations</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aparna</td>
<td>B</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>Bikas</td>
<td>D</td>
<td>D</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chandra</td>
<td>D</td>
<td>A</td>
<td>F</td>
<td>F</td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>Deepak</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td></td>
<td>3.2</td>
</tr>
<tr>
<td>Fazal</td>
<td>D</td>
<td>F</td>
<td>B</td>
<td>D</td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>Gowri</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td></td>
<td>3.8</td>
</tr>
<tr>
<td>Hari</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td></td>
<td></td>
<td>2.8</td>
</tr>
<tr>
<td>Ismet</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jagdeep</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
<td>3.8</td>
</tr>
<tr>
<td>Kunal</td>
<td>F</td>
<td>A</td>
<td>F</td>
<td>F</td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>Leena</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>F</td>
<td></td>
<td>3.2</td>
</tr>
<tr>
<td>Manab</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nisha</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>F</td>
<td>3.6</td>
</tr>
<tr>
<td>Osman</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td></td>
<td>4.6</td>
</tr>
<tr>
<td>Preeti</td>
<td>F</td>
<td>D</td>
<td>D</td>
<td></td>
<td></td>
<td>3.2</td>
</tr>
<tr>
<td>Rahul</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>F</td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>Sameer</td>
<td>C</td>
<td>F</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tara</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>Utkarsh</td>
<td></td>
<td>F</td>
<td>C</td>
<td>A</td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>Vipul</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>F</td>
<td></td>
<td>2.4</td>
</tr>
</tbody>
</table>

\[
\begin{bmatrix}
\text{Finance} \\
\text{Marketing}
\end{bmatrix}
\]
Example – Image data
Example – Unstructured data

Unstructured data (e.g., text data)

Feature Extraction

Structured data (e.g., Bag-of-Words Model)

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>love</th>
<th>dogs</th>
<th>hate</th>
<th>and</th>
<th>knitting</th>
<th>is</th>
<th>my</th>
<th>hobby</th>
<th>passion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doc 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doc 2</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doc 3</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Data in Machine Learning

- x_i: input vector, independent variable
 $$x_i = \begin{bmatrix} x_{i,1} \\ x_{i,2} \\ \vdots \\ x_{i,n} \end{bmatrix}, \quad x_{i,j} \in \mathbb{R}$$

- y: response variable, dependent variable
 - $y \in \{-1, 1\}$ or $\{0, 1\}$: binary classification
 - $y \in \mathbb{Z}$: multi-label classification
 - $y \in \mathbb{R}$: regression
 - Predict a label when having observed some new x
Data Visualization

- **Vector space model**
 - Data is a set of features, $d_i = \{f_1, f_2, \ldots, f_p\}$
 - All data can be represented by vector

Ref: https://www.slideshare.net/pkgosh/the-vector-space-model
Data Visualization

- Hand-written data (MNIST)
 - High-dimensional data
 - Can visualize data using Principle Component Analysis
Read Chapter 2:

- Linear Algebra
 - Multiplying Matrices and Vectors
 - Identity and Inverse Matrices
 - Linear Dependence and Span
 - Norms